TRESPA® TOPLAB® in Cleanroom

Training for partner use only

Trespa® TopLab® presentation content

- Definition and Standards
- TopLab® properties applied to Cleanrooms
- Particle emission
- Corrosion
- Decontamination
- <u>Chemical resistance</u>

- Electrostatic charges
- Cleanability
- Emissions (Outgassing)
- Certification for Cleanroom
- Standard Delivery Program
- Trespa® TopLab® in pictures...

Definitions and Standards

Cleanrooms

Cleanroom

Room within which the number concentration of airborne particles is controlled and classified, and which is designed, constructed and operated in a manner to control the introduction, generation and retention of particles inside the room

Particle concentration
 Number of individual particles per unit volume of air

Cleanrooms: main regulations

- Cleanroom classification ISO 14644-1
- EU Good Manufacturing Practice (GMPs)
 Manufacture of Sterile Medicinal Products
- US-based FED-STD-209 E Airborne
 Particulate Cleanliness Classes in Cleanrooms and Cleanzones
- Fraunhofer considers also VDI 2083 (Verein Deutschland Ingenieure) considerations

GMP (Good Manufacturing Practices) for medicinal products

Grade A	Grade B	Grade C	Grade D
Sinks and drains prohibited in	Sinks and drains are	Less critical operations	Less critical operations
Grade A	prohibited in Grade B	ISO 7 at rest, ISO 8 in	ISO 8 at rest, not defined for
High-risk operations (filling	ISO 5 at rest, ISO 7 in	operation	in operation
zone, stopper bowls, open	operation	Monitoring depends on the	Dirtiest area of GMP
ampoules, and vials, making aseptic connections)	Particle monitoring system	quality risk management	guidelines
Laminar airflow cabinet can	with alarm if limits are exceeded is required	Used for filling of products for terminal sterilization (at least	
obtain Grade A cleanliness in Grade B background	Background zone for Grade A	in a Grade C)	
5 1 1 1 100 5	Used for aseptic preparation	Preparation of solutions to be	
Equivalent to an ISO 5	and filling	filtered, including weighing	
cleanroom environment (at rest and in operation)			

- Grade A: The local zone for high risk operations
- Grade B: For aseptic preparation and filling
- Grade C and D: Clean areas for carrying out less critical stages in the manufacture of sterile products.

ISO 14644

The quality of the "clean production" system is decisively influenced by the materials used.

A controlled environment is specified using rules for the classification of air cleanliness (e.g. ISO 14644): these rules define the **sizes** and **concentrations** of airborne particles in the supply air.

Cleanroom suitability is part of compatibility with the required cleanliness and deals with particle emission behaviour only.

Table 1 — ISO Classes of air cleanliness by particle concentration

ISO Class number (N)	Maximum allowable concentrations (particles/m³) for particles equal to and greate than the considered sizes, shown belowa					to and greater
	0,1 μm	0,2 μm	0,3 μm	0,5 μm	1 μm	5 μm
1	10b	d	d	d	d	e
2	100	24b	10b	d	d	е
3	1 000	237	102	35b	d	e
4	10 000	2 370	1 020	352	83 ^b	e
5	100 000	23 700	10 200	3 520	832	d, e, f
6	1 000 000	237 000	102 000	35 200	8 320	293
7	c	c	c	352 000	83 200	2 930
8	с	с	с	3 520 000	832 000	29 300
9е	c	с	с	35 200 000	8 320 000	293 000

All concentrations in the table are cumulative, e.g. for ISO Class 5, the 10 200 particles shown at 0,3 μm include all particles equal to and greater than this size.

Table from classification of air cleanliness by particle concentration (ISO 14644-1:2015)

b These concentrations will lead to large air sample volumes for classification. Sequential sampling procedure may be applied; see <u>Annex D</u>.

Concentration limits are not applicable in this region of the table due to very high particle concentration.

d Sampling and statistical limitations for particles in low concentrations make classification inappropriate.

Sample collection limitations for both particles in low concentrations and sizes greater than 1 µm make classification at this particle size inappropriate, due to potential particle losses in the sampling system.

f In order to specify this particle size in association with ISO Class 5, the macroparticle descriptor M may be adapted and used in conjunction with at least one other particle size. (See G.Z.)

B This class is only applicable for the in-operation state.

TopLab® properties applied to Cleanrooms

Cleanrooms: material properties

- Particle emission
- Corrosion
- Decontamination
- Chemical resistance
- Electrostatic charges
- Cleanability
- Emissions (Outgassing)
- >Not all materials are good for every application; there is no perfect material that suits all cleanrooms.
- However TopLab® PLUS and TopLab® VERTICAL have excellent properties for most cleanrooms application

	Particles	Outgassing	ESD	Cleanability	Chemical resistance
Semiconductor industry	++	++	++	+	+
Microsystem engineering	++	+	++	+	+
Pharmaceutics	++	0	+	++	++
Biotechnology	+	+	0	++	++
Medical engineering	+	0	+	++	++
Photovoltaic industry, thin-film	+	+	+	0	0
Photovoltaic industry, poly-silicon	+	+	+	0	0
Food industry	+	+	0	++	++

- ++ mandatory
- recommended, but not mandatory
- not generally required, individual check recommended

Particle emission

- It is responsibility of who designs the cleanroom to assess suitability of material for type of cleanroom; refer to norm 14644,
- Suitability of Trespa TopLab® in cleanrooms depends on type of stress and use
- Since the material is made of paper/wood, it is not suitable for cleanest cleanrooms (GMP class A and ISO class 1 to 4)
- We can provide references from experience using TopLab® in :
 - GMP class B / C / D
 - ISO class 5 to 9

Corrosion

 The sodium hypochlorite in bleach reacts with carbon dioxide in the air to produce chlorine gas, a powerful oxidizer that will attack most metals, including the chromium oxide layer on the stainless steel

TopLab® material is not made from metal and therefor does not corrode

Decontamination H₂O₂ (for sterile production)

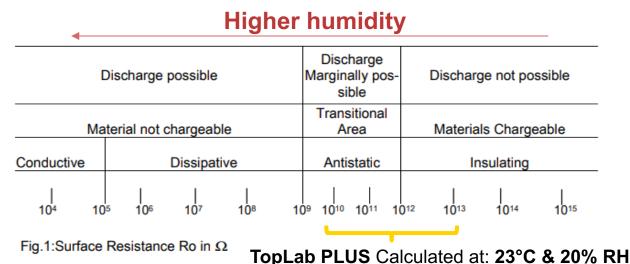
- Controlled environments for sterile production require regular decontamination.
- The use of vaporized hydrogen peroxide (H₂O₂) to decontaminate controlled environments is the preferred method.
- Each decontamination cycle ends with an aeration phase to reduce the vaporized hydrogen peroxide to a specified limit.
- Decontamination Fraunhofer test demonstrate that desorption of H²O² on TopLab[®]
 PLUS is fast (average below 13 minutes) and reach on average 17 minutes for TopLab[®] VERTICAL

Chemical resistance

- Different test methodologies exist with different duration; concentrations; cleaning & testing procedure
- Most common methodologies are from EN438; SEFA and FRAUNHOFER
- TopLab[®] PLUS and TopLab[®] VERTICAL show excellent results with most chemicals and up

	Incubation					
emicals	1 h	3 h	6 h	24 h		
malin 37%	excellent	excellent	excellent	excelle		
moniac 25 %	excellent	excellent	excellent	good		
drogen peroxide 30%	excellent	excellent	excellent	excelle		
furic acid 5 %	excellent	excellent	excellent	excelle		
osphoric acid 30 %	excellent	excellent	excellent	excelle		
acetic acid 15 %	excellent	excellent	excellent	excelle		
drochloric acid 5 %	excellent	excellent	excellent	excelle		
propanol 100 %	excellent	excellent	excellent	excelle		
dium hydroxide 5 %	excellent	excellent	excellent	weal		
dium hypochlorite 5 %	excellent	excellent	excellent	excelle		
CSM	classificatio	n		Very		

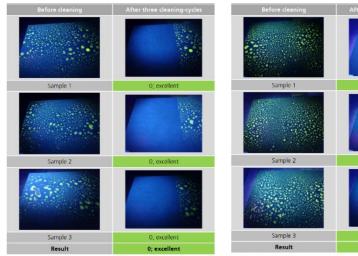
Chemicals	Incubation					
Criemicals	1 h	3 h	6 h	24 h		
Formalin 37%	excellent	excellent	excellent	excellen		
Ammoniac 25 %	excellent	excellent	excellent	excellen		
Hydrogen peroxide 30%	excellent	excellent	excellent	excellen		
Sulfuric acid 5 %	excellent	excellent	excellent	excellen		
Phosphoric acid 30 %	excellent	excellent	excellent	excellen		
Peracetic acid 15 %	excellent	excellent	excellent	excellen		
Hydrochloric acid 5 %	excellent	excellent	excellent	excellen		
Isopropanol 100 %	excellent	excellent	excellent	excellen		
Sodium hydroxide 5 %	excellent	excellent	excellent	excellen		
Sodium hypochlorite 5 %	excellent	excellent	excellent	excellen		
CSM classification						


Example of test result from Fraunhofer

Electrostatic characteristics

• The resistivity is the capability of dissipating any existing charge in a controlled manner and sufficiently rapidly. The conductivity of a material depends on its resistivity: the higher the resistivity, the lower the conductivity. A distinction is made between antistatic, static conductive or static dissipative and insulating materials.

Depending on operating conditions TopLab[®] material is Antistatic (10¹⁰) and could be also Insulating (10¹³)


Cleanability – Fraunhofer Riboflavin test

What is it?

A fluorescence test is performed to check the cleanability of the surface. This test method is of great relevance, especially in the field of sterile process engineering. By applying a test liquid to the test object and performing a defined cleaning procedure, the residues on the product can be evaluated.

How?

https://www.youtube.com/watch?v=L_SwPbgQ8I0&t=88s

Both, TopLab^{® PLUS} and TopLab^{® VERTICAL} score EXCELLENT at the Fraunhofer Riboflavin test

TRESPA

Results for Tool ab BLUS

Outgassing documentation

- The quantity of organic compounds outgassed from materials depends upon surface area, outgassing time, age of the material and test temperature
- There are several methodologies to calculate formaldehyde/VOC/SVOC emissions: MPD;
 GREENGUARD; FRAUNHOFER...
- Test Results for TopLab^{® PLUS} and TopLab^{® VERTICAL} show excellent performance:

Greenguard Gold certification

Fraunhofer results:

Contaminant Category (x)	SER _a ¹⁾ 23°C [g/m²s]	SER _a ¹⁾ 90°C [g/m²s]	ISO-ACC _m C- lass (x) based on 23°C
VOC	8.6 x 10 ⁻⁹	6.1 x 10 ⁻⁸	-8.1
SVOC	< 2.8 x 10 ⁻¹⁰	< 1.7 x 10 ⁻⁹	< -9.6
Amines	< 2.8 x 10 ⁻¹⁰	< 1.7 x 10 ⁻⁹	
Organophosphates	< 2.8 x 10 ⁻¹⁰	< 1.7 x 10 ⁻⁹	
Siloxanes	< 2.8 x 10 ⁻¹⁰	< 1.7 x 10 ⁻⁹	
Phthalates	< 2.8 x 10 ⁻¹⁰	< 1.7 x 10 ⁻⁹	

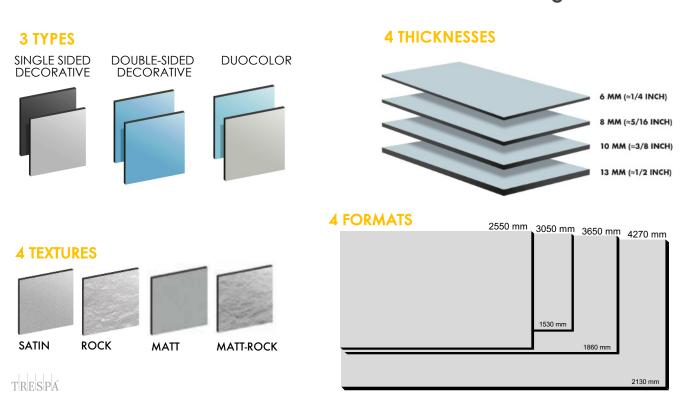
Trespa® TopLab® Certifications for Cleanroom



Certification for Cleanroom

Main certification available related to cleanroom application:

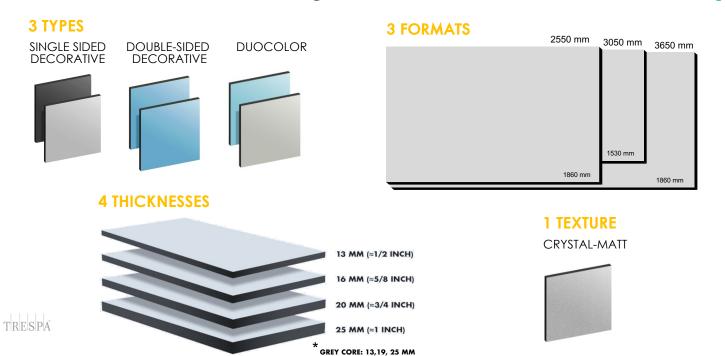
- Franhofner Qualification test for Outgassing SVOC/VOC, Ammonia, Inorganic Acid; Chemical resistance; Riboflavin,
- Test certification from manufacturers of cleaning agent: Steris, Virkon, Shuelke, Eco-point...
- Greenguard & vGreenguard Gold
- SEFA-3 and SEFA_8

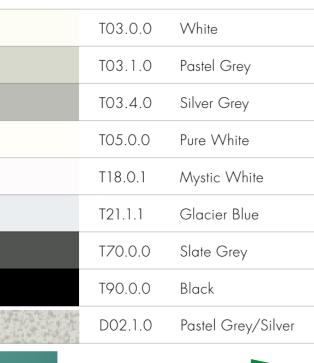

Trespa® TopLab® Standard Delivery Program

Standard Delivery Program: TopLab®VERTICAL

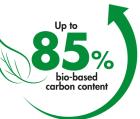
The widest range of Exclusive decors (Metallics, Lumen) and texture

Available in 4 ideal formats to reduce cutting waste





100+ DECORS


Standard Delivery Program: TopLab®PLUS

- A large choice of colors for worktops
- Produced in 3 ideal formats to reduce cutting waste
- Available also with the highest amount of Bio-based content (up to 85%)

Trespa® TopLab® in pictures

(because 1 image is sometimes better than 100 words...)

Think Trespa